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Abstract. In this paper we present a detailed study of the emergence and the long-time 
behaviour of coherent vortices in two-dimensional decaying turbulence. By high-resolution 
numerical experiments we find that the coherent structures are self-similar, i.e. their energy, 
enstrophy and size satisfy scaling laws. Moreover, the knowledge of the statistical distribu- 
tion of the size of these vortices is sufficient to compute the energy spectrum of the 2 D  

turbulence flow and to explain the significant deviations from the Kraichnan-Batchelor 
theory. At long times the motion of the fluid is dominated by the vortex dynamics, which 
is strikingly similar to the Hamiltonian motion of few point vortices, as is confirmed by a 
comparison between the numerical simulations of the two systems. 

1. Introduction 

In recent years many studies have been performed in order to understand the dynamical 
properties of two-dimensional turbulent flows. Besides purely theoretical motivations, 
ZD turbulence is of interest in geophysical fluid dynamics. Away from the equatorial 
region, large-scale oceanic and atmospheric motions can often be approximated by a 
quasi-two-dimensional fluid flow in a rotating frame of reference. Direct numerical 
integrations of 2~ Navier-Stokes equations can now be performed at very high Reynolds 
numbers [ 1,2] and some data are starting to become available from laboratory experi- 
ments [3]. 

In 2~ fully turbulence flows one of the most interesting features, observed both in 
numerical and laboratory experiments, is the emergence of long-lived vortices: most 
of the vorticity of the turbulent flow is concentrated inside the vortices, which seem 
to dominate the dynamical behaviour of the system. Therefore a consistent picture of 
fully-developed turbulence in two dimensions requires a clear understanding of the 
physical properties of such coherent structures. 

The emergence of vortices in these experiments poses a number of interesting 
questions: for instance, it is not clear whether there exists a characteristic scale for 
this mechanism, or whether the formation of these structures is possible even at very 
small scales. In other words, the relevance of initial conditions and of external forcing 
is not yet clear. If indeed stable vortices can exist at all scales, then substantial 
deviations from Batchelor-Kraichnan [4-61 theory for the initial range of the turbulent 
regime should be expected. 

It is also necessary to provide a quantitative description about the role of the 
vortices in the dynamics to clarify whether these really represent the relevant part of 
the motion. I f  this is the case, only a few degrees of freedom would be necessary to 
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characterise fully turbulent motion. This can have great impact on the ‘predictability 
problem’ for 2~ turbulence and ultimately for its implications in geophysical flows. 

In this paper some answers to the above-mentioned questions are proposed in the 
framework of decaying turbulence. In this case we find that coherent vortices develop 
at all scales of motion. As we find also that the shape of the vortices is the same at 
all scales, it is possible to derive a simple connection between the scale, the energy 
and the enstrophy for these structures. As a consequence we are able to deduce the 
slope of the 2~ inertial range energy spectrum as a function of the number of vortices 
per scale (i.e. their distribution function). Coming to dynamical properties, we compare 
vortex trajectories obtained by high-resolution numerical integrations with those of 
point particles of the same vorticity in a Hamiltonian model. These two different 
approaches give strikingly similar results for large timescales, i.e. that large-scale 
properties of 2~ motion can be properly described in terms of few Hamiltonian degrees 
of freedom. 

The paper is organised as follows: 5 2 describes the numerical model and some 
qualitative results. In § 3 we study the statistical and geometrical properties of coherent 
vortices. In 5 4 we discuss the link between the slope of the energy spectrum and the 
statistical distribution of the vortices. In 5 5 the comparison between the dynamics of 
vortices in Navier-Stokes equations and in the Hamiltonian point-like scheme is 
presented. Comments and conclusions are reported in 5 6 .  

2. Description of the experiments 

The Navier-Stokes equations for a 2~ incompressible, purely dissipative flow are: 

a , w + J ( $ , w ) = D  (2.1) 

where CC, is the stream function of the system and w = A$ is its vorticity. The Jacobian 
( J ( a ,  b )  = a,a a,b - a,b a,a) and the right-hand side term D represent non-linear terms 
and dissipative effects respectively. As has been discussed in the introduction, we are 
interested in the statistical and dynamical properties of coherent structures in fully 
developed 2~ turbulence. Therefore a set of high-resolution numerical integrations of 
(2.1) have been performed (512 x 512 degrees of freedom). In the following we point 
out some technical deta,ils of these numerical experiments [7]. 

The computational domain which we choose is a square one, with periodic boundary 
conditions. The linear size of this domain is 27r. The integration method consists of 
a de-aliased pseudo-spectral code [8]. For the dissipation term in (2.1) a superviscosity 
scheme is used [ 9 ] ,  namely a term of the form - V , ( - A ) ~ W ,  and in most experiments 
p = 2. This amounts, for a fixed numerical resolution, to working with a higher effective 
Reynolds number, or to moving the dissipative effects to small scales. 

The stream function at t = 0 is defined in wave space as a complex Gaussian field 
with zero mean and random phases. The variance of this field is such as to give an 
energy spectrum which is self-similar in wave space, with a power law E ( k )  - (see 
[lo]). The superviscosity coefficient is v2 = 2 x lo-’ which corresponds to a dissipative 
timescale which is O( 1) for k - 150. 

Normalisation is such that the energy of the system, defined as 

1 
E =- dx dy(V+)’ 

2v v 
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where V =  ( 2 ~ ) ~  is the total volume of the system, is 0.5 at the beginning of the 
computation. In the continuous limit this quantity should be conserved, and con- 
sistently our model shows a long-time decrease of less than 1 O h .  On the other hand, 
the enstrophy of the system, namely 

2 = L I dx dy(A$)2 (2.3) 
v v  

is not conserved in the continuous limit, and decreases from 2 - 150 to 2 - 10 in our 
experiments. 

Figure 1. The vorticity field for the 512x 512 experiment at t = 10 ( a ) ,  20 ( b ) ,  30 (c)  and 
40 ( d ) .  The following contours are shown: 4, 8, 12, 16, 20 (full curves); -4, -8, -12, -16, 
-20 (dotted curves). It should be noted that after t = 30 the number and the sizes of the 
coherent vortices do not change. 
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Numerical integrations were performed for 64 000 time steps, corresponding to 40 
time units. We stress that the long duration of these runs is a peculiar feature, which 
has not been achieved to this extent in previous works. 

The dynamical behaviour of the system can be described as follows: the short-time, 
transient stages are characterised by aggregation processes between patches of vorticity 
which, as time goes on, become anelastic collisions between well defined, coherent 
structures. These collisions occur between eddies of the same sign of vorticity, which 
therefore tend to merge to give larger stable eddies with the same shape. At long times 
( t - 2 5 )  the eddy dynamics seems to dominate the flow: such structures tend to stay 
far apart from each other and collisions no longer take place. Figures l ( a ) - ( d )  show 
the time evolution of the vorticity field for the 512 x 512 simulation. 

To interpret these results properly, one should first understand what the relevance 
of resolution effects is in this picture. This amounts on more physical grounds to 

0 i 
Figure 2. Same as In figure 1 for the experiment with resolution 128 x 128 ( a )  and 256 x 256 
(b ) ,  at t = 30. 

1 1, . 

10-4 'o-zt 
\ 

1o"Q I 

1 10 102 1 o3 
Wave number 

Figure 3. Energy spectra at I = 30 corresponding to the experiments 512 x 512 (full curve), 
256 x 256 (broken curve) and 128 x 128 (dotted curve). The slope of the full line is -4.3. 
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understanding whether some kind of scaling property holds for the vortices. Figures 
2 ( a ) ,  ( b )  show the vorticity field for two numerical integrations with same total initial 
energy ( E  = 0.5) and the same initial spectrum as in the 5 12 x 5 12 experiment, and 
resolutions 128 x 128, 256 x 256 respectively. In order to preserve physical properties 
at different resolutions we halve the dissipative scale when doubling the resolution 
scale. As a consequence, motion is more and  more turbulent at  a given scale when 
increasing resolution. From inspection of figures 1 and 2 one can state that self-similar 
character is preserved in the runs. That is, as resolution is increased, smaller and  
smaller eddies are produced. The energy spectrum E ( k )  reflects the behaviour of the 
vorticity field. Figure 3 shows the energy spectra corresponding to the fields of figures 
1 and 2. A well defined inertial range is shown, where E ( k )  - k-4.3, almost independent 
of resolution. Moreover these spectra are definitely steeper than the one predicted by 
the Batchelor-Kraichnan theory of ? D  turbulence, namely E ( k )  - k-3.  We will show 
in § 4 how the slope of the spectra is connected to the scaling properties of coherent 
vortices. 

3. Self-similar structures of coherent vortices 

We have seen at the end of the previous section that ZD decaying turbulence is 
characterised by the emergence of coherent vortices at every scale of length. Here we 
will investigate the dependence of the shape, the energy and the enstrophy of each 
vortex as a function of its characteristic radius. 

The coherent structures shown in figure 1 can also be regarded as those regions of 
the fluid motion where a strong correlation holds between the vorticity field and its 
stream function. Indeed in figure 4 we show a scatter plot between $(x, y )  and w ( x ,  y )  
for all the points (x, y )  of the square domain. For values of vorticity large in absolute 
value we observe a strong correlation between w and $. It is worth pointing out that 
data plotted in figure 4 have been corrected by subtracting the advection coming from 
the motion of the vortex. We remark that the functional dependence of w on $ is 
non-linear. Thus a handwoven definition for a vortex consists in selecting those regions 

-3 Ud 
-40 -20 0 20 40 

V o r t i c i t y  

Figure 4. Scatter plot of the stream function against the \orticity for the experiment 
512  x 512 at r = 30 (see figure I ( c ) ) .  We neglect all the points for which lwl s 2, to simplify 
the plot. 
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of fluid for which Iw(x, y ) l 3  wth, where a suitable choice for the threshold Wth is 
understood. The choice of this threshold is unique at all scales. 

Another possible definition for a coherent vortex concerns simple criteria about 
the stability of the Lagrangian particles immersed in the velocity field at a given time. 
Given a flow configuration $(x, y )  at time t ,  the resulting velocity field is 

ay ( X d , J  

A small perturbation along the trajectories evolves in the following way: 

The eigenvalues analysis of equations (3 .2)  gives 

A = * % @  

where 

(3.1) 

( 3 . 2 a )  

(3 .26)  

(3 .3)  

(3.4) 

From formulae (3 .2)  and (3.3) it follows that in the regions of the fluid where Q < 0 
the distance between two particles embedded in the velocity field (3.1) will not diverge 
exponentially as a function of time. Thus one should expect that vortices are charac- 
terised by Q < O .  Figure 5 ( a )  shows the contour map for Q, and figure 5(6) a 
one-dimensional cross section, corresponding to figure l ( c ) .  One can notice a very 
good correspondence between coherent vortices and regions with Q < 0. We remark 
that the same quantity Q (which appears here having purely kinematical meaning) 
was used by McWilliams to claim that coherent vortices are regions of the fluid where 
enstrophy cascading is prevented [lo]. 

We checked that these two definitions of coherent vortices give the same results, 
i.e. one can select vortices either by fixing some suitable threshold value on vorticity 
field or studying stability properties of Lagrangian paths. The former has the practical 
advantage of computational efficiency and has been used in the present analysis. 

To look at scaling properties we first investigated whether a self-similar, universal 
character could be identified in the shape of these eddies. We conjectured a simple 
parametrisation of vorticity and stream function of a single vortex: 

w , ( r )  = w o f ( r / R , . )  (3 .5)  

1clY(r) = cLo,g(r/R”) (3 .6)  

where R ,  is the radius of the vortex, and a circular symmetry for the vortex field is 
implied; wo,  and &,,, are dimensional parameters. The functions f and g have a 
‘universal’ dependence on the quantity r /  R, , ,  i.e. they are independent of the specific 
vortex considered. These functions are connected through the equation 

(3.7) 



Coherent structures in ZD decaying turbulence 1227 

-- 4 0 * o  

-100 
0 0.2 0.4 0.6 0.8 1.0 

Figure 5. Contour map of Q at t = 30 ( a ) .  Negative values of Q (full curves) correspond 
to stable eigenvalues of (3.2) while positive values (dotted curves) correspond to unstable 
ones. Contour levels are -4, -9, -16, - 2 5 ,  -36 and 4, 9, 16, 2 5 ,  36. A cross section of 
Q along the line shown in ( a )  is reported in ( b ) .  Note that large instabilities occur only 
near the edge of the vortices. 

where 6 = r /R , , .  It follows that +bOu = +wo,Rt. Some easy consequences from (3.5) and 
(3 .6)  can be checked. Measuring for each vortex the quantity 

-2  

F = loR’ o?(x, y )  dx dy( lR” w , ( x ,  y )  dx dy) 

using equation (3.5) we get 

(3.8) 

(3.9) 

Therefore, if a unique shape characterises all vortices, plotting F for each vortex would 
result in a scaling law, F - R-2 ,  based on pure geometrical arguments, As a matter 
of fact, we report in figure 6 a plot of F against the area, for all vortices of a 512 x 512 
numerical integration, during the time interval {30,40}. A linear behaviour with slope 
-1  is clearly shown. Moreover this result does not depend on time evolution. Another 
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Figure 6.  Plot of F against the area of each vortex in the time interval 3 0 s  r G 40. 

check which strongly supports this universality hypothesis is the plot in figure 7, where 
the scatter plot of f ( 5 )  against 6 is shown. Again a unique dependence can be 
recognised. 

These results confirm that coherent vortices in decaying turbulence are self-similar 
structures. The energy and  the enstrophy of each vortex are given by 

E = CER2w& (3.10) 

a= CnR;wiY (3.11) 

where the constants CE and Cn do not depend on R , .  
From inspection of figure 1 we note that wov depends very weakly on the scale of 

the vortex. It follows that equations (3.10) and (3 .11)  provide a link among the density 

1.01 ' I 1 I . , . , , , 
+ 
U 
+ 
- 
- 
5 0.5 
w L 

3 0 

W O  

3 - 
0 e 

-0.5 
0 - 

-1 .o 
-2.0 -1.5 -1.0 -0.5 O 0.5 

log normalised radius 

Figure 7. Scatter plot of the logarithm of the square vorticity against the logarithm of the 
radius at r = 30, for all the points inside the vortices. For each point the vorticity is 
normalised with the mean square vorticity of the corresponding vortex and the radius is 
normalised to the vortex radius, defined as the square root of the area divided by T. 
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distributions of vortices v( R ) ,  i.e. the number of vortices with radius R,  to the density 
distributions of vortex energy and enstrophy P , ( E )  and P,(n), i.e. the nuniber of 
vortices with energy E and enstrophy R respectively. One can easily obtiiin 

P I  ( E ) - ( C1 E 'I4) E -'I4 (3.12) 

P,(sz) - q( c,n"',n-'~* (3.13) 

where C1,  C, are constants depending on C E ,  Cn and w o v .  Thus the only physical 
quantity needed to describe scaling laws in a vortex system is t ) ( R ) .  Figures 8 ( a ) - ( c )  
show respectively the integral distribution functions corresponding to 77, P,  , P2 as they 
result from our numerical integrations. All of them show a power-law behaviour, 

l o o \  6 0  

40 

20 
L 
0 n 

10 
- 
2 6  
!= 

i 
\ 

1 

0.02 0.040.06 0.1 0.2 0.4 0.6 1 0  2.0 
Vortex radius 

40 

L 2 0  

E, 
= 10  

e 6  

n 

- 
0 + 

1 

1 i 
10-3 lo-?  l o - *  1 10 

Vortex enstrophy 

2 0  

k 
E 1 0 '  
2 +  
n 

2i 

(bl 

Figure 8. ( a )  Integral of the vortex radius distribution function. Many plots are superim- 
posed for different times in the range t = 30-40. The slope of the full line is -0.90. Since 
the large vortices are more well defined, the integral is computed from right to left: 
N ( R , ) - ~ ~ ; _  p ( R )  dR. The same integral quantities are shown for energy and enstrophy 
in ( b )  and ( c )  respectively and the slopes of the full lines are -0.15 and -0.33 respectively. 
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namely 

v ( R )  - R-" (3.14a) 

P , ( E )  - E - P  (3.14b) 

P,(fl) - ( 3 . 1 4 ~ )  

and the estimates of a, p and y give 

a - 1.90 (3.15a) 

p - 1.15 (3.15b) 

y - 1.33. (3.1 5 c )  

We obtain an independent estimate for p and y from (3.12) and (3.13). It turns out 
that /3 = a(3 + a )  = 1.22 and y = f( 1 + a )  = 1.45. These values are in reasonable agree- 
ment with (3.1 5), which once more confirms confidence in the self-similarity hypothesis. 
We remark that the numerical discrepancies could be connected to the weak dependence 
of wov on R,. 

4. The influence of coherent structures on the spectrum of the inertial range 

Since Kolmogorov theory (see [4]) the energy spectrum of turbulence has been a 
subject of many investigations. Batchelor and Kraichnan [5,6] (herafter referred to 
as BK) extended Kolmogorov theory to 2~ turbulence. The major predictions of the 
BK theory are ( a )  that enstrophy is transferred from large to small scales and (b) that 
an inertial range proportional to E 3  for the energy spectra would develop in the 
enstrophy cascading range. 

It was already observed in P 2 that such predictions have not been confirmed by 
some direct integrations of 2~ Navier-Stokes equations [2, 10, 111. This is also the 
case for our experiments. Although enstrophy is indeed transferred from large to small 
scales, the spectral slope of energy in the inertial range is about -4 over a wide range 
of wavenumbers, i.e. steeper than the BK theory predictions. To our knowledge, the 
only experiment which in a sense agrees with the BK theory was performed by Brachet 
et a1 (see [ l]), where indeed a k - 3  spectrum was observed. As a matter of fact, in that 
experiment no small-scale coherent structures were formed. This is very likely con- 
nected to the shape of the energy spectrum in initial conditions, which is proportional 
to exp( - k 2 /  k ; ) ,  where kT = 5, while in our experiment the initial spectrum is near to 
k-3 .  Therefore in the Brachet et a1 experiment enstrophy is initially confined at large 
scales, while an initial condition with K 3  spectrum enhances small-scale contributions. 
Such a difference in the initial conditions could in principle explain the different 
outcome of the experiments, as a different behaviour in a transient stages of the 
simulations. Nevertheless it would remain to understand which is the (statistically 
significant) asymptotic behaviour and possibly which are the characteristic times for 
the transient effects to be over. 

To answer this question we will first show how the emergence of coherent structures 
can determine the spectral slope of the enstrophy cascading range. To be more specific, 
we will propose a connection between the scaling properties of coherent vortices 
(namely, their distribution function v( R ) )  and the energy spectrum. 
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Let us consider a vortex of radius R and vorticity profile 

w ( r )  = wof(r/R). (4.1) 

Its Fourier transform is given by 

R R ( k )  = wo 5 d r  dB f (i) e-ikrcos e = % F ( k R )  k2 (4.2) 

where F ( 5 )  = 27r 
The energy spectrum for nR (k)  is easily obtained: 

dxxf(x/5)Jo(x) and Jo is the zeroth-order integer Bessel function. 

(4.3) 

Given the single-vortex contribution to the energy spectrum, we can now obtain the 
whole spectrum, assuming that the vorticity field outside vortices does not contribute 
significantly to it [12, 131. This statement has been tested computing the energy 
spectrum restricted to the coherent structures, which is shown in figure 9, which agrees 
with the global one of figure 3 over a large range of wavenumbers. 

'1 

W 

10-6 

i 
10-'0J I 1 

1 10 102 1 o3 
Wavenumber 

Figure 9. Energy spectrum restricted to the coherent vortices at t = 30 (full curve). The 
spectrum is almost identical to the one shown in figure 3. Coherent structures are defined 
as those connected regions with 1w( 2 4. The dotted curve represents the energy spectrum 
for the remaining part of the field. Note that the dotted spectrum is near K 3 .  

Therefore, neglecting the vorticity field outside the coherent structures we can 
obtain the energy spectrum of the system by integrating (4.3) over the vortex distribution 
defined in 5 3: 

dR F2(kR)7(R)=w;k- '  dRR-"F2(kR)=wik-6'n I 
(4.4) 

This computation is correct as long as the vortices do not overlap. Therefore the 
connection between E ( k )  and 7 ( R )  is established and E ( k )  - k-6+a. From the value 
a - 1.9 previously estimated we recover E ( k )  - k-4.'. The spectra of figures 3 and 9 
have an index 4.3, in rather good agreement with this result (see also figure 10). 
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Figure 10. Energy spectra of the largest vortices (full curves) and of the total vorticity field 
(broken curve). The slope of the broken curve is -4.3. It is readily seen that the vortices 
are the dominant dynamical component; the vortices clearly determine the power-law index 
p of the total energy spectrum. 

As is clear from this picture that the exponent a of the vortex distribution function 
plays a major role, it must be understood whether there exists a selection mechanism 
for it, which would possibly result in the definition of different universality classes, 
depending on the initial conditions. As we already described, in the early chaotic 
stages turbulence is essentially driven by aggregation processes around vorticity peaks. 
Thus this first phase depends strongly on initial conditions. On the other hand at later 
times large-scale phenomena occur as merging between eddies of the same sign and 
dipole-like motion of pairs of eddies. These latter events may have a universal character. 
Presently it is not clear to us whether the first class of processes or the second one 
determine the value for the index a. 

In the following we propose a simple model which gives a preliminary answer to 
the above question. Let us consider a very large number of vortices and let R, be the 
vortex radii with R o S  R I  G R 2 S .  . . S  S RI. We will assume that the merging of 
two vortices of the same size and sign is the dominant dynamical mechanism and in 
particular that the merging of two vortices of radius Rk gives one vortex of radius 
R,,,. Let ni be the number of vortices of radius Ri. This quantity decreases due to 
merging in the population i and it increases due to merging in the population i - 1. 
Thus we can write 

(4.5) 

where T,, T , - ~  are the inverse rate of merging in the population i, i - 1 respectively. In 
(4.5) the factor f is due to the fact that merging between two vortices of radius R,- l  
gives one vortex of radius RI as previously assumed. Following standard arguments 
of classical mechanics we can say that 

7;' = n,u,v, (4.6) 

where U, is the vortex-merging cross section and 0, the average velocity for a vortex 
at scale i. A rough estimate for the cross section is U, - R,. On the other hand numerical 
simulations suggest that small vortices move faster than large ones (see also § 5). Thus 
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in a first approximation we can assume u,u, to be weakly dependent on R,.  In the 
following we set uIvi constant. Using (4.5) and (4.6) we obtain 

ri, = @f-, - Cnf. (4.7) 

On a long timescale the stationary solution of (4.7) satisfies 
-112 ni = 2  ni - l  (4.8) 

which has the iterative solution 

n, = (:)"'no (4.9) 

where no is the number of vortices with the smallest radius Ro. To get the number of 
vortices with given radius we assume that 

RI = y ' Ro . (4.10) 

Equation (4.10) implies that the merging mechanism is independent of the vortex 
radius and all other parameters. We remark that if energy is conserved and enstrophy 
is dissipated during a merging then y = 2' '. On the other hand if enstrophy is conserved 
and energy is produced then y = 2"?. 

By (4.9) and (4.10) we finally obtain: 

nl = n o ( ~ , / ~ o ) - ( ~ n 2 i / ( ? ~ " ~ J  (4.11) 

so that Q =(In 2)/(2 In y ) ,  i.e. a = 2 for energy-conserved merging and a = 1 for 
enstrophy-conserved merging. As previously observed, a - 1.9 in our numerical experi- 
ments, i.e. quite close to the scheme in which energy is conserved. As a matter of fact, 
energy conservation is almost satisfied in our numerical integrations. 

Due to the number of assumptions in our simplified model, specifically (4.7) and 
(4.10), it is quite surprising that equation (4.11) gives essentially the right answer. It 
is evident that more realistic hypotheses can be included in the model, by saying for 
instance that u,u,  is a function of RI rather than a constant, but this is beyond the aims 
of the present work. We only want to point out that a scaling law R-" is somehow a 
consequence of the facts that 

( a )  a large number of vortices exists at small scales; and 
( b )  vortex merging is the only mechanism to produce large-scale vortices. 
In decaying turbulence, these two requirements can be verified or not, depending 

on the initial conditions. More precisely, if initially enstrophy is confined to the large 
scales, as happens in the experiment of [ 11, small-scale vortices are produced only 
after a very long time, while large-scale vortices may be directly produced due to initial 
conditions. This point is currently under study [14]. 

5. Dynamical analysis of the vortex system 

This section will be essentially devoted to some qualitative observations about vortex 
dynamics in numerical experiments, and to some detailed comparison with a simulation 
of point-like particle motion. 

First of all one can compare the time dependence of the enstrophy and energy 
carried by vortices with that of the background field. We see from figure 11 that the 
set of all vortices does not dissipate significantly. Indeed every single vortex does not 
lose energy and enstrophy in the asymptotic regime. Hence, within a coherent vortex, 
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7 - 1  1 

30 32  34 36 38 40 
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Figure 11. Enstrophy against time for the eight largest vortices (full line) and for the total 
system (broken line). Note the remarkable conservation of enstrophy for the vortex system. 

2~ turbulent flow seems to satisfy an  almost inviscid equation (or at least with a 
dissipative timescale much longer than in the rest of the fluid). 

Briefly, at least two timescales characterise the turbulent motion in a numerical 
simulation: one has to d o  with the enstrophy dissipation rate of the background field 
and the other with the dynamics of the vortex field and its rather slow dissipation 
timescale. Therefore, even though a priori no timescale separation can be foreseen in 
the 2~ turbulent flow, one clearly sees that the existence of coherent structures induces 
a dynamical separation of timescales. This point of view is nearly opposite to the 
standard phenomenological theories, which predict an eddy-turnover time which is 
constant along the whole inertial range. These preliminary observations naturally lead 
to a comparison with a simple inviscid system, namely a set of point vortices following 
a Hamiltonian dynamics. 

We start by defining the Green function G(x, y ,  X, j j )  of the Laplacian: 

AG(x, y ,  X, j )  = 6(x - X ) S ( y  - j ) .  (5.1) 

The evaluatiop of G depends on the geometry of the system. Using periodic boundary 
conditions in our simulations, we computed G numerically in an  optimised way (see 
for example [15]). Then the point-vortex stream function 4 can be defined as 

(5.2) 

where x,, y ,  is the position of the vth point-like vortex, and r, its vorticity strength. 
The time evolution of the position vector (xu, y y )  is given by 

(5 .3a )  

(5 .36 )  

N where H = -Z,,>,=, T,T,G(x,, y,, x,, y,) and the self-interaction of every vortex is 
subtracted. As our aim is to compare this dynamics with the one given by integration 
of Navier-Stokes equations, we took the vortex configuration from one of the 512 x 512 
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experiment at t = 30 as the initial state of the pointwise system. We replaced a vortex 
whose centre is in ( x u ,  y,)  with a particle in the same position with a 'charge' equal 
to the total, integrated vorticity of the spread vortex. 

Results of Hamiltonian dynamics for ten time units (figure 12) are compared with 
the same result obtained with the spectral code for the Navier-Stokes equation in the 
same time interval. Such time intervals are of the order of ten time units, whereas the 
instability times estimated measuring Q (see figure 5( 6))  are roughly 0.2: trajectories 
tend to agree for times long enough for some vortices to cross the whole system. The 
agreement between the two instances is striking, particularly for the main, large-scale 
features. We remark that such a comparison is done between a system with more than 
lo5 degrees of freedom (wavevectors in the Fourier decomposition) against a system 
with less than 20 point vortices! 

The Hamiltonian equations (5.3) allow us to discuss the dynamical influence of 
small-scale vortices on large-scale ones. Let us consider the vortex configuration at a 
given time, described by the set of coordinates { x u ( ? ) ,  y , ( t ) } .  The stability of this 
configuration can be determined by an eigenvalue analysis of the linearised version 
of (5.3), namely 

(5.4a) 

(5.46) 

which holds for Y = 1 ,2 , .  . . , N. Let A M  be the largest eigenvalue of (5.4). This is a 
function of the configuration { x Y ( t ) ,  y Y ( t ) ) .  Hence we can compute A M  for each 

Figure 12. ( a )  Trajectories of the centres of the 17 largest vortices (vortex area >0.01); 
the plot has been obtained from the 512  x 512 simulation with the aid of a vortex recognition 
algorithm. The time interval plotted is 30-40. Thick (thin) lines are used for positive 
(negative) vortices. Circle sizes are proportional to vortex radii and segment lengths are 
proportional to velocities. ( b )  As in ( a )  bur for the 17 point vortices, each one having the 
same total vorticity r ,  of the corresponding vortex of the high-resolution simulation. The 
plot has been obtained from the solution of equations (5.3) starting with the positions of 
the centres of the corresponding vortices of figure I ( c ) .  Note the striking correspondence 
of the trajectories of ( a )  and ( b ) .  
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Figure 13. Plot of the largest eigenvalue (full curve) of (5 .4 )  as a function of time for the 
trajectories shown in figure 12( b ) .  The dotted curve represents the largest eigenvalue for 
the Hamiltonian system restricted to the five largest vortices. 

configuration obtained integrating (5 .1) .  The plot of A M ( t )  is shown in figure 13. We 
see that A M  is of order 1, which means that the characteristic ‘predictability’ time for 
the Hamiltonian system (5.1) is roughly 1 time unit. Comparing figures 12 and 13 we 
can argue that A M  is associated to small-scale vortices. As a matter of fact, trajectories 
of large-scale vortices are very stable for long timescales, much larger than 1 time unit. 

An interesting insight into the ‘predictability’ timescale of large-scale vortices can 
be obtained through an eigenvalue analysis similar to (5.4), but restricted on the five 
largest vortices. In figure 13 the quantity A M (  t )  for this reduced system is plotted. We 
see that it is A M  -0.2. This implies that the predictability time for the large-scale 
vortices is approximately 5, i.e. larger than the characteristic time of the whole 
Hamiltonian system (5.3) and more than one order of magnitude larger than the 
Lagrangian instability timescales. 

In summary we say that a ‘hierarchy’ of instability times exist in the system. The 
smallest timescales are associated to the background sea which is weakly coupled to 
the coherent vortices. For the latter, which are very like a Hamiltonian system, 
predictability times increase significantly with respect to the background sea (more 
than an order of magnitude). Moreover, large-scale vortices are more predictable than 
small-scale ones. 

One may wonder whether the background vorticity field has any effect on the 
coherent structures. Probably the motion of coherent vortices is somehow perturbed 
by the effect of such background field. We can speculate that, as characteristic times 
of low and high vorticity fields are different, the net effect of background field on 
vortex motion would amount to some small random perturbation whose statistical 
properties are those of the low-vorticity regions. 

6. Conclusions and final remarks 

Due to the number of problems touched in this work, it is convenient to summarise 
the main results. 
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(i)  Increasing the Reynolds number the number of vortices increases with smaller 
and  smaller characteristic scale. 

(ii) Vortices appear as approximately circularly symmetric structures, with a unique 
profile; the main parameter which characterises them is their radius. 

( i i i )  The inertial range of the energy spectrum is definitely steeper than K 3 .  Indeed 
the shape of the spectrum is dominated by the coherent vortices. More precisely, the 
energy spectrum is the superposition of the energy spectra of the single vortices. 

(iv) Given these ingredients, the energy spectrum can be analytically obtained from 
the quantity 7 ( R ) ,  i.e. the distribution of the vortices with their radius R. Results of 
numerical simulations strongly support this point. 

(v) A vortex is essentially a non-dissipative structure; i.e. enstrophy and energy of 
every single eddy is conserved in the asymptotic state of the motion. Even more 
remarkable is the fact that the long-time dynamics of such coherent structures resembles 
very much that of point vortices satisfying a Hamiltonian formulation. The characteristic 
timescale of the Hamiltonian system is much longer than that of the background field. 
Therefore the system itself produces a dynamical timescale separation. 

This kind of analysis has strengthened the point that the ‘true’ collective variables 
for ZD turbulence are the vortices. Moreover, evidence has been provided about the 
existence of a dynamical separation of scales, which indeed suggests that we are faced 
with a problem of coupling between slow and fast variables (or, if one wishes, between 
Hamiltonian and  Lagrangian dynamics); thus possibly some kind of clever averaging 
procedure appears to be a feasible strategy for this problem. 
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